
1

Phi-panel-serial User Interface for Arduino

Last reviewed on 3/22/2017

Dr. John Liu

2

1. Introduction ... 4
2. Main features .. 7

Hardware: .. 7
Software (simple display): .. 7

Software (interactive menu display): .. 8
Software (keypad): .. 8
Software (peripheral): ... 8

3. Connecting phi-panel to Arduino.. 8
4. Setting your panel parameters ... 9

Terminal .. 9
Settings .. 9
Serial address .. 10

Credit... 10
5. Assemble a kit (V3.3 board) ... 10
6. Testing your panel... 12

7. Updates ... 12
8. Short examples .. 13

Example 1 - clock ... 13
Example 2 – long message .. 14

Just print with Serial.print ... 14

Use the long message function ... 14
Example 3 – a short menu ... 15

Example 4 – a longer menu/list .. 17
Example 5 – an even longer menu/list .. 18

Using long message command: .. 18
Using interactive list/menu command: ... 20

Example 6 – input numbers and passwords .. 22
Input number: .. 23
Input password: ... 24

Example 7 – text input .. 25
Example 8 – a rather complex interface ... 27

9. Printable characters ... 27
10. Panel keypad outputs ... 27

11. Basic ASCII control characters .. 28
'\b': destructive back space. ... 28
'\e': escape sequence indicator... 29
'\f': form feed. .. 29

'\n': new line or line feed. .. 29
'\r': carriage return. .. 29
'\t': tab (4 spaces). .. 29

^N or 14: shift out (enable multi-tap input). ... 30
^O or 15: shift in (disable multi-tap input). .. 30
^W or 23: End of transmission (deselect serial device) .. 31
^\ or 28: File separator (select serial device) .. 31

12. ANSI escape sequences (standard) .. 31
CSI n A: CUU – CUrsor Up ... 31

3

CSI n B: CUD – CUrsor Down... 31
CSI n C: CUF – CUrsor Forward ... 31
CSI n D: CUB – CUrsor Back .. 32
CSI n E: CNL – Cursor Next Line .. 32

CSI n F: CPL – Cursor Previous Line .. 32
CSI n G: CHA – Cursor Horizontal Absolute .. 32
CSI n ; m H: CUP – CUrsor Position ... 32
CSI n I: CSC – CUrsor Scroll Control .. 32
CSI n J: ED – Erase Data .. 32

CSI n[;k] L: DD – Display Dimension(backpack only) ... 33
CSI n[;k] m: SGR – Select Graphic Rendition ... 33

13. ANSI escape sequences (phi_prompt) ... 34

1. \e A String: OK dialog .. 34
2. \e B String: YES/NO dialog .. 35
3. \e C n String: Input text ... 35

4. \e D n String: Input numerical value ... 35
5. \e E n String: Input alphanumerical string .. 35

6. \e F Prompt_string String1 [String2 …]: interactive list/menu 36
7. \e G String: Long message .. 36
8. \e H n: Change baud rate ... 36

14. ANSI escape sequences (extended functions) ... 37
\e I n: Change LED/general purpose output status ... 37

\e J n: Turn on the nth LED/general purpose output ... 37
\e K n: Turn off the nth LED/general purpose output ... 37

\e O n;m: Play a tone on the speaker... 37
\e P: Buzz .. 38

\e Q n: Back light level ... 38
\e S n binary: Set a custom character .. 38
\e T n: Enable or disable repeat after a key is held. .. 38

\e V n: Set phi_prompt display details. ... 39
\e W n: Set highlighted menu item ... 39

\e Z: Reinitialize phi_prompt. ... 39
\e a: Display ASCII string on screen. .. 39

\e b: Display panel settings menu. .. 39
15. Future improvement ... 39
16. The legal stuff .. 40

4

1. Introduction
Phi-panel is a family of intelligent LCD keypad panels to be used as user interfaces in your

projects. Whether you are a novice or a veteran in programming and electronics, this panel

is your best solution to user interface. Phi-panel allows you to easily use an LCD and

keypad to display simple information, interactive menus, lists, dialogs and collect menu

selections, numerical inputs or key presses from a user, with the least amount of coding.

Figure 1-1. Family of phi-panels and its members

Phi-panel has huge advantages over regular LCDs, keypads and LCD shields. When you

consider a user interface, you should consider the following factors:

1) How many Arduino pins are needed

2) What libraries are needed and how much memory the library uses

3) How easy it is to program a user interface with your choice of hardware.

(A) Family of phi-panels (B) Phi-panel 16x2 with integrated

keypad

(C) Phi-panel 20x4 with integrated keypad (D) Phi-panel backpacks (optional

keypad)

5

The following is a comparison:

LCD:
 Regular character LCD Phi-panel's on board LCD

Arduino Pins Uses 6 Arduino pins Uses 1 Arduino pin

Library Needs LiquidCrystal library Needs no library

Memory cost LiquidCrystal library costs memory No extra memory cost.

Blocking Arduino is blocked from doing other

things while displaying on LCD

Arduino is free to do anything while

displaying on phi-panel

Line wrap for

long messages

Message longer than one line displays in

the wrong place by LiquidCrystal library

Message longer than one line displays

correctly with automatic line wrap

Auto scroll Message won't scroll when screen is full Message scrolls when screen is full

New line, back

space, tab

LiquidCrystal library won't understand

those. You do it manually, painfully.

Phi-panel understands all of those.

Menus, Y/N

dialogs, multiple-

page messages

You have to find a way to do all these on

your own. There are available libraries so

more learning and more memory cost.

Serial.print("\eFMenu\nItem1\nItem2\n~"

) makes phi-panel display a menu and tend

to user keypad input while Arduino does

other things. Phi-panel returns user choice

like '1', '2' etc.

Going from 16x2

to 20x4 display

Running out of 16x2 display space? You

may need to redesign all you information

for the new display.

Phi-panel automatically rescales and

repositions everything to make use of the

larger display.

Keypad
 Regular 4*4 matrix keypad Phi-panel's keypad

Arduino Pins Uses 8 Arduino pins Uses 1 Arduino pin

Library Needs keypad library Needs no library

Memory cost keypad library costs memory No memory cost.

Blocking Arduino is blocked from doing other

things while sensing keypad

Arduino is free to do anything while phi-

panel senses keypad

Menus, Y/N

dialogs, multi-

page messages

You have to find a way to do all these on

your own. There are available libraries so

more learning and more Arduino memory

cost.

Serial.print("\eFMenu\nItem1\nItem2\n~"

) displays a menu on phi-panel. Phi-panel

tends to the user keypad input while

Arduino can do other things. Phi-panel

returns user choice like '1', '2' etc.

The family of phi-panels currently has 3 members: The 16X2 version (Fig.1-B) has a 16*2

character LCD with integrated 16-key keypad, buzzer, and 4 LED indicators. The 20X4

version (Fig. 1-C) has a 20*4 character LCD with integrated 16-key keypad, buzzer, and 4

LED indicators. The backpack version can work with many display sizes and directly

hooks up to an optional 4*4 membrane matrix keypad, or rotary encoder and 5 buttons, or

up to 8 push buttons (simply change firmware) and an optional buzzer.

I have designed face plates for panels with integrated keypads and the serial backpack. The

assembled kit looks like the picture in fig. 1-2. Only backpack face plates are current for

sale on inmojo.com

The backpack is the more popular choice among Arduino users. Since its introduction, over

400 backpacks have been sold as of June. 2016. I have also used it for several contract

projects, where clients decided they needed easy-to-use LCD interfaces.

6

(A)

(C)

(D)

(B)

(E)

Figure 1-2. Phi-panels with face plates. (A) Directional key face plate (8 keys, 16X2,

20X4), (B) Rotary encoder face plate (rotary encoder, 6 keys, 16X2, 20X4), (C) Matrix

keypad face plate (16X2 only), (D) face plate for 16X2 panel with integrated keys, (E)

face plate for 20X4 panel with integrated keys.

The panels with integrated keypads etc. will easily make your project look and feel

professional especially with their face plates, while the backpack versions gives you the

freedom on keypad layouts, locations and display choices to fit in your project's space.

To display message, simply perform a Serial.print(). The panel wraps long messages and

accepts carriage return, backspace, and tab so your output looks nice with the least effort

on you. The keypad has keys 0 to 9, up, down, left, right, enter, and escape. To sense button

presses, just listen to the serial port and perform a Serial.read() when there is available data.

The character you read represents the key the user pressed.

With the phi-panel, you can whip up a professional-looking user interface for your project

in less than a minute. The following is a sample menu of a GPS display and logger. Assume

the phi-panel is connected to Arduino's hardware serial port and you have a 20X4 display.

The first three lines print the menu on the LCD. The next several lines wait for a valid

response ('1' or '2') on the keypad and call either display_GPS() or record_GPS().

Serial.println("Menu:"); // Display " Menu" on line 1

7

Serial.println("1.Display GPS info"); // Display option 1 on line 2

Serial.println("2.Record GPS info"); // Display option 2 on line 3

while(1) {

 if (Serial.available()) { // Make sure there is a key press

 char response=Serial.read(); // Read key press from phi-panel

 if (response=='1') display_GPS(); // Display GPS info on LCD

 if (response=='2') record_GPS(); // Record GPS info on SD card or EEPROM

 break; // Breaks out of the while (1) loop.

 }

}

A beginner without programming skills to tackle button sensing or understanding of how

to hook up an LCD or matrix keypad can simply leap from the Arduino Serial.print

examples of printing to serial window to displaying on the LCD and processing key presses.

2. Main features

Here are the main features of the phi-panel:

Hardware:

Ú ATMEGA328 microcontroller manages all hardware

Ú TTL-Serial (0-5V) interface, compatible with all Arduino variants and most other

microcontrollers

Ú Version 16X2 has 16X2 character display. Version 20X4 has 20X4 display.

Backpack versions can be purchased with or without displays.

Ú Keypad has 0-9, four directional keys, enter, and escape, backpack version is

compatible with 4*4 membrane matrix keypad, directional keys, rotary encoders

Ú 4 LEDs (integrated panel only)

Ú Buzzer for simple buzz or any tone

Ú Software adjustable LCD back light intensity

Ú Reset key behind the panel (integrated panel only)

Ú Firmware can be upgraded for more functions

Software (simple display):

Ú Wraps messages at the end of a line.

Ú Automatic scrolls lines up with new messages.

Ú Supports control characters: newline ('\n'), return ('\r'), backspace ('\b'), tab ('\t').

Ú Supports most ANSI escape sequences: cursor position, blinking/underline cursor.

Ú Supports local echo of key presses for regular inputs or no local echo of key presses

to conceal inputs for password fields.

Ú Supports LCD back light brightness control 0-255.

Ú Supports custom characters

Ú Display is addressable so up to 254 displays can be connected to one serial port.

8

Software (interactive menu display):

Ú Supports interactive menus, scrollable long text, YES/NO or OK dialogs and

various number and text inputs with a simple Serial.print().

Ú Supports highlighting any options in an interactive menu (default settings)

Ú Supports on-the-fly settings change.

Software (keypad):

Ú Returns key presses via serial port such as '0' to '9' on the number pad and the arrow

pad and enter and escape.

Ú Get user input with multi-tap (like on cell phone number pad) for alphanumerical

and symbol inputs. No programming is needed.

Ú Getting numbers and passwords is as easy as 1-2-3 with few lines of code.

Software (peripheral):

Ú Can control 4 LEDs for status indication (integrated panels only)

Ú Can output any tone on the buzzer

3. Connecting phi-panel to Arduino
To connect phi-panel to Arduino, first connect 5V and GND on the panel to Arduino power

pins. Then connect panel TX to Arduino RX and panel RX to Arduino TX. If you already

loaded a sketch to Arduino, reset Arduino and see the sketch run. Before loading a new

sketch to your Arduino, disconnect the panel TX and RX from Arduino. This only applies

if you connect the panel to the Arduino hardware serial port, which is used to upload new

sketch. If you are using soft serial, or you are using the panel on Serial1 thru Serial3 on a

MEGA2560, you don't need to disconnect the lines.

If you have a backpack version, you can connect the backpack to a membrane keypad as

indicated by the picture, with the "01230123" on the backpack connected to the keypad

pins 1 thru 8. Notice the "1" and "8" on the keypad plug.

Figure 3-1. The connection between the backpack and a membrane keypad.

The "S" and "-" are used to connect to a speaker. You need a resistor in series with the

speaker.

9

4. Setting your panel parameters
The phi-panel is very friendly to beginners and yet can do a lot of sophisticated tasks if

needed. Almost all operating parameters can be changed and saved to EEPROM via the

on-board keypad menu (integrated panel version) or with a 4*4 matrix keypad (back pack

version). This gives you a big peace of mind compared with other typical serial panels that

don't have any way of reporting these parameters in a human-readable format.

To invoke the interactive on-board menu, press the "ESC" on the on-board keypad or "#"

on the 4*4 matrix keypad when the panel is in normal display mode (no phi_prompt

function is running). Once inside the interactive menu, just follow the instructions inside

"Settings" to complete your settings. Then choose "Terminal" to return to normal operation.

Figure 4-1. The compact phi-panel with 16*2 display and integrated keypad displays the

interactive menu.

Unlike other serial panels that can receive and save parameters via serial port and store to

EEPROM, such as display size and back light brightness, phi-panel allows parameters over

the serial port but won't save to EEPROM. This means anything you change (or mess up)

over the serial is reset over a hardware reset or power cycle. This prevents you from having

a setting command in a loop() and repeatedly saving settings to EEPROM to render the

EEPROM unusable after 10,000 erases. The loop is rather quick and this could happen to

a beginner and then you end up with a processor that has no working EEPROM.

The panel stores the current information and restores the display after done. The menu has

4 items:

Terminal

This will restore what was last displayed on the panel and take you back to normal panel

function, essentially the panel functions like a terminal.

Settings

You may choose a baud rate from 4800 to 115200. You will then choose whether to beep

at startup, a good indicator the panel is initialized but could be annoying so you can turn it

off. Then you will choose the LCD back light brightness between 0 (off) and 255 (full on).

You can also adjust the key repeat speed. You will also be asked the size of your display,

and the serial address of the display. The setting is stored in EEPROM, so next time the

panel starts it loads these settings. In case you messed up these settings, you can download

the firmware erase sketch to erase your firmware and reload it. You can also set most of

10

these parameters via serial but they will not be saved to EEPROM, in case you set a wrong

number that freezes the panel. A reset will restore a wrong setting via the serial to the

setting stored in EEPROM.

Serial address

You will be asked whether to enable serial addressable feature of the panel. This is a unique

feature not found in any other panels. By default it is turned off. When enabled, the panel

only displays information sent to a specific address and discards everything sent to other

addresses. The following picture is two phi-panel backpacks hooked up to one serial port

and with addressable enabled. The top display is address 1 and only responds to

information sent to address 1, i.e. "Screen 1 reporting!". The bottom display is address 2

and only responds to message sent to display 2. For details on how to address displays,

read section on "Basic ASCII control characters". This feature is very useful if you want

to run multiple displays, up to 254. There is also a broadcast address to talk to all of them.

Figure 4-2. Two phi-panel backpacks (16*2 and 20*4 displays) running on one serial

port.

Credit

This displays credit and software version of your phi-panel.

When the panel is executing any phi_prompt functions, such as long messages, interactive

lists, or Y/N and OK dialogs, or when your menu is disabled by setting, you will be unable

to access this on board menu.

5. Assemble a kit (V3.3 board)
If you purchased a kit, please follow the steps to assemble it. The backpack version is even

easier to assemble. Some instructions on back packs can be found at the end of this section.

There is a separate document for backpack assembly and its keypad options. You need to

secure parts to the PCB before soldering to ensure they don't fall off during soldering.

Bending the pins, masking tape (easy), rubber band, or hold by hand and solder (bit tricky).

11

There is no particular order to assemble the panel, except that in all versions, you assemble

the LCD as the last step. The LCD will block access to some pins so check your solder

work before you solder on the LCD.

Here is a list of numbers and parts on the figure below although your actual board may be

slightly different due to revision, the steps are all accurate to the latest revision:

1. 16-pin male header for LCD

2. LEDs and included resistors (LED long leg goes to the “+” pins). Sometimes I

include high-brightness LEDs so to make them not glow so brightly I include 1.5K

ohm resistors. If I include regular LEDs, I would include 330 ohm resistors.

3. 16 buttons. Make sure you push them all the way in and check it before soldering.

4. 6-pin female header. You need to bend the long pins 90 degrees.

5. Buzzer. Make sure buzzer “+” goes to the corresponding pin.

Figure 5-1. Assembled panel front and back. No LCD is attached.

The following are some general instructions for soldering:

When soldering, make sure the soldering iron is hot. Touch the soldering junction with the

iron, bring solder to the same junction but let the junction melt the solder instead of letting

the iron melt the solder. When soldering the ICs, minimize time you spent heating the pins

to avoid damages.

To secure resistors, transistors, diodes, LEDs, insert the legs through the holes; then bend

the legs on the other side of the PCB to keep the parts in place. Once these parts are soldered

on, use a pair of flush wire cutters to remove the legs.

Diodes, transistors, LEDs and some buzzers have polarity so make sure you don't place

them in the holes in reverse.

For LEDs, long legs go through holes with a “+”, short legs bottom holes.

12

Now that you have an assembled and tested panel, you may want a face plate for its looks.

I have the file to make laser-cut face plates. Due to the cost of making face plates, I don't

really sell them but if you want to make them for your own panels, just ask me for the file.

Here is a picture of the backpack version PCB:

Figure 5-2. Assembled back pack on 5mm graph paper. PCB version 1.11. No LCD is

attached.

Notice that not all parts are attached. The back light resistor is 150ohm while the one on

the other side is 10kohm. If you wish to use a buzzer (the panel can buzz or plan tones),

attach a proper resistor at “Buzzer” and the buzzer on the “S” and “-“ pin. Make sure the

current will not exceed 40mA. You also get a bunch of ground holes on the bottom right

in case you load the directional key firmware and lay out your own buttons on a panel.

6. Testing your panel
To test your panel, you can load phi_panel_big_show project code to your Arduino, and

follow the section of "connecting the panel to Arduino" to run the sketch. I strongly suggest

you use software instead of hardware serial on Arduino UNO. If you have a MEGA, you

can use any of the serial ports 1-3. Make sure you run all the demonstrations on the menu.

The code is located on the phi-panel home page under test code:

http://liudr.wordpress.com/phi-panel/

7. Updates
Please check my blog http://liudr.wordpress.com/phi-panel/ for any updates.

Panel 20X4:

Circuit board version Firmware version

3.3 3.1.2

Backpack:

Circuit board version Firmware version

1.9 - 1.12 (kits and assembled) 3.1.2

3.0 (assembled only) 3.1.2

Panel 16X2:

http://liudr.wordpress.com/phi-panel/
http://liudr.wordpress.com/phi-panel/

13

Circuit board version Firmware version

2.0 1.6.0 and other that specify compatible with panels

3.3 3.1.2

8. Short examples

I will walk you through several short examples. The first couple are simple enough. You

might even be able to do it on any LCD screen, with some extra code. Then the next few

will show you how easy to render a multi-page menu by simply printing the menu’s text

to the panel, with a few extra characters acting as commands.

The following are example codes for various tasks you may find yourself up against in

your projects. Some code snippets require proper serial port initialization that resides in

setup(). The common initialization code is the following:

void setup()

{

 Serial.begin(19200);

}

You can also replace the hardware serial with SoftwareSerial library.

Example 1 - clock

You want to simply display information on the LCD. Say you are making a clock, with

variables: month, date, year, hour, minute, and second.

Here is the command to display the clock:

Serial.print('\f'); // Clear screen

Serial.print(month);

Serial.print("/");

Serial.print(date);

Serial.print("/");

Serial.print(year);

Serial.println(); // Go to next line

Serial.print(hour);

Serial.print(":");

Serial.print(minute);

Serial.print(":");

Serial.print(second);

delay(500);

Result:

14

For a more elegant way to produce this, you can use the following code:

// Learn the sprint() at cplusplus.com

char msg[21]; // This is a buffer for the output string.

sprintf(msg,"%02d/%02d/%04d",month,date,year); // Format mm/dd/yyyy

Serial.println(msg); // Output mm/dd/yyyy

sprintf(msg,"%02d:%02d:%03d",hour,minute,second); // Format hh:mm:ss

Serial.print(msg); // Output hh:mm:ss

delay(500);

Example 2 ï long message

Just print with Serial.print

You want to print a long message: "The GPS module needs open sky to acquire a lock".

On a regular LCD you will have to cut this message into several pieces, each 20

characters long, to fit on the display. Otherwise since a regular LCD doesn't wrap long

messages at the end of a line, the message is garbled after the first line. Since phi-panel

automatically wraps messages at the end of a line, you can just send the entire message

over and the panel displays it over several lines:

Serial.print("The GPS module needs open sky to acquire a lock");

Result on a 20x4 display:

Apparently you can't print that much on the 16X2 version with smaller display. You

could, if you use the long message function with scroll functions by pressing up and

down keys.

Use the long message function

Instead of directly printing the message, you add a phi_prompt function header "\eG"

before the complete message and add a "~" after the message to mark the end of the

message so your message will be displayed with scroll functions.

Serial.print("\eGThe GPS module needs open sky to acquire a lock. Cold start could take

minutes.~");

The message gets displayed as a long message and you can press up and down to read the

entire message. You will need to press a button other than up or down to dismiss the

message. So in order to sense this key press to know when to continue your program, you

can do the following:

15

Serial.print("\eGThe GPS module needs open sky to acquire a lock. Cold start could take

minutes.~");

While (!Serial.available()) {} // Wait until a key press comes via the serial

Serial.read(); // Read the key pressed and not store it.

For details of the long message, read this in this section.

Example 3 ï a short menu

Everyone wants a menu for their projects but not everyone has enough programming

experience to pull it off in one minute. With the phi-panel, you get a nice menu for only

one minute of hard work. Here is how. Let's use the GPS logger example. You want three

menu options, display GPS info on screen (you know how to display it, just use the clock

example), record GPS info on SD card, and show credit. To make a simple menu on a

smaller display, read the next several examples.

Let's first realize that a menu is nothing mysterious, just a list, and corresponding actions

when the user selects a particular item on the list. So we should first print out the list and

then sense a user response.

Printing the list:

Serial.print('\f'); // Clear screen

Serial.println("GPS Menu:"); // Display "GPS Menu" on line 1

Serial.println("1.Display GPS info"); // Display option 1 on line 2

Serial.println("2.Record GPS info"); // Display option 2 on line 3

Serial.print("3.Show credit"); // Display option 3 on line 4

The function println creates a new line after printing the message. You want to use println

on the first 3 lines because you want a new line after the print but you don't want to use

println on the last line since a new line after the last line will scroll the screen and squeeze

out the first line.

Here is how your menu looks:

Sensing user input:

Since you have indicated to your user that pressing 1, 2, or 3 will choose among the three

options, you will be waiting for a response now the the following code:

while(1) {

 if (Serial.available()) {

 char response=Serial.read();

16

 if (response=='1') display_GPS(); // Display GPS info on LCD

 if (response=='2') record_GPS(); // Record GPS info on SD card

 if (response=='3') show_credit(); // show project credit

 break; // Breaks out of the while (1) loop.

 }

}

The while(1) loop makes sure that Arduino will keep waiting until the user gives a response.

The Serial.available() makes sure there is a response before Arduino performs a

Serial.read(), something you should NOT consider optional. The next few if statements

will run different subroutines depending on the user's choice. If the user has made an

invalid choice, say '4', the menu doesn't do anything. The user can then make a valid choice.

I have added an important statement "break;" at the end of the if-statement block. This

makes sure that the execution breaks away from the while (1) loop after any menu function

is called so loop() will rerun and paint the menu again. This is important. I also have defined

the three functions that correspond with each menu options. You can do anything inside of

them. The above is the most straightforward way to make a menu, period. You can

definitely modify the entire code (below) within one minute and make it your own.

Complete code:

void setup()

{

 Serial.begin(19200);

 delay(100);// Make sure the panel is up and running.

}

void loop()

{

 Serial.print('\f'); // Clear screen

 Serial.println("GPS Menu:"); // Display "GPS Menu" on line 1

 Serial.println("1.Display GPS info"); // Display option 1 on line 2

 Serial.println("2.Record GPS info"); // Display option 2 on line 3

 Serial.print("3.Show credit"); // Display option 3 on line 4

 while(1) {

 if (Serial.available()) {

 char response=Serial.read();

 if (response=='1') display_GPS(); // Display GPS info on LCD

 if (response=='2') record_GPS(); // Record GPS info on SD card

 if (response=='3') show_credit(); // show project credit

 break; // This breaks out of the while(1) loop.

 }

 }

}

17

void display_GPS()

{

 Serial.print('\f'); // Clear screen

 Serial.println("Displaying GPS info");

 // Do the actual GPS display stuff

 delay(3000); // User has 2 seconds to read the response

}

void record_GPS()

{

 Serial.print('\f'); // Clear screen

 Serial.println("Recording GPS info");

 // Do the actual GPS recording stuff

 delay(3000); // User has 2 seconds to read the response

}

void show_credit()

{

 Serial.print('\f'); // Clear screen

 Serial.println("Dr. John Liu");

 Serial.print("Phi-panel serial V1");

 delay(3000); // User has 2 seconds to read the response

}

Example 4 ï a longer menu/list

What if you have more than 3 items on your menu or a list. One quick way is to shorten

each item and print multiple items on one line. In the following example, you want your

user to choose a day of the week. You will need to print 3 days on one line.

We will start from the complete code since you have the last example under your belt:

void setup()

{

 Serial.begin(19200);

 delay(100);// Make sure the panel is up and running.

}

void loop()

{

 Serial.print('\f'); // Clear screen

 Serial.println("Select a day:"); // Display "Select a day" on line 1

 Serial.println("1.MON 2.TUE 3.WED"); // Display options 1 thru 3on line 2

 Serial.println("4.THU 5.FRI 6.SAT"); // Display options 4 thru 6 on line 3

 Serial.print("7.SUN"); // Display option 7 on line 4

 while(1) {

18

 if (Serial.available()) {

 char response=Serial.read();

 if ((response>='1')&&(response<='7'))

 {// Only '1' thru '7' are valid inputs.

 int day=response; // Store response.

 // Do something with this response

 Serial.print("\fYou selected option:");

 Serial.print(response);

 delay(2000); // User has 2 seconds to read the response

 break;// Make sure to break out of the while (1) loop.

 }

 }

 }

}

This example will loop like this on screen:

Example 5 ï an even longer menu/list

What if you have an even longer list and every item also needs more space? They won't fit

on one screen. That's for sure. Then you have two choices: print using a long message

command, or print using interactive menu/list command. The first one is a make shift but

very easy to extend from the above examples. The second one is specifically designed to

handle menu/list of any size but requires a bit more understanding. We will do both.

Using long message command:

A long message command is "\eGBlahblah~". This is covered in this section under long

message. Essentially "\eG" starts the long message, which is followed by the content of the

long message, which is terminated by '~'. Make sure you use '\n' for new lines in the long

message to keep the output organized. The entire menu will display on screen with up/down

scroll functions to allow the user to see all items. The user can press any key (except for

up/down) to dismiss the message and the key press is sent back to Arduino via serial.

Complete code:

void setup()

{

 Serial.begin(19200);

 delay(100);// Make sure the panel is up and running.

19

}

void loop()

{

 Serial.print("\eGMain menu:\n1.Display GPS info\n2.Record GPS info \n3.Erase

data\n4.Display records\n5.Parameters\n6.Show credit~"); // Entire menu

 while(1) {

 if (Serial.available()) {

 char response=Serial.read();

 if (response=='1') display_GPS(); // Display current GPS info on LCD

 if (response=='2') record_GPS(); // Record GPS info on SD card

 if (response=='3') erase_data(); // Erase recorded data

 if (response=='4') display_records(); // Display recorded GPS info on LCD

 if (response=='5') parameters(); // Adjust program parameters

 if (response=='6') show_credit(); // Show project credit

 break; // This breaks out of the while(1) loop.

 }

 }

}

void display_GPS()

{

 Serial.print('\f'); // Clear screen

 Serial.println("Displaying GPS info...");

 // Do the actual GPS display stuff

 delay(3000);

}

void record_GPS()

{

 Serial.print('\f'); // Clear screen

 Serial.println("Recording GPS info...");

 // Do the actual GPS recording stuff

 delay(3000);

}

void erase_data()

{

 Serial.print('\f'); // Clear screen

 Serial.println("Erasing data...");

 // Do the actual erase data stuff

 delay(3000);

}

void display_records()

20

{

 Serial.print('\f'); // Clear screen

 Serial.println("Displaying records...");

 // Do the actual data display stuff

 delay(3000);

}

void parameters()

{

 Serial.print('\f'); // Clear screen

 Serial.println("Parameters are...");

 // Do the actual parameter stuff

 delay(3000);

}

void show_credit()

{

 Serial.print('\f'); // Clear screen

 Serial.println("Dr. John Liu");

 Serial.print("Phi-panel serial V1");

 delay(3000);

}

I have again added all the phony functions such as display_GPS() that you will fill with

actual contents. Although this solves the problem, you can only have up to 10 options on

your list or menu as you have only 10 number keys. To completely free yourself from this

constraint, you will need interactive list/menu command.

Using interactive list/menu command:

An interactive list/menu command is "\eFMenu title\nItem1\nItem2\n~". This is covered

in this section under interactive list. Essentially "\eF" starts the menu, which is followed

by menu title string with '\n', then with any number of menu items, each with '\n', which is

terminated by '~'. Make sure you use '\n' for all items including the last one.

The menu title will always be visible on line 1 while lines 2 thru 4 display 3 menu items at

a time. Pressing up/down will bring in other items like an MP3 player. There is no need to

print numerical index before each item. The user will need to press enter on an item

highlighted by an arrow to make the choice. Then the menu is dismissed and the user choice

is sent back to Arduino via serial.

Complete code:

void setup()

{

 Serial.begin(19200);

21

 delay(100);// Make sure the panel is up and running.

}

void loop()

{

 Serial.print("\eFMain menu:\nDisplay GPS info\nRecord GPS info \nErase

data\nDisplay records\nParameters\nShow credit\n~"); // Entire menu

 while(1) {

 if (Serial.available()) {

 char response=Serial.read();

 if (response=='1') display_GPS(); // Display current GPS info on LCD

 if (response=='2') record_GPS(); // Record GPS info on SD card

 if (response=='3') erase_data(); // Erase recorded data

 if (response=='4') display_records(); // Display recorded GPS info on LCD

 if (response=='5') parameters(); // Adjust program parameters

 if (response=='6') show_credit(); // Show project credit

 break; // This breaks out of the while(1) loop.

 }

 }

}

void display_GPS()

{

 Serial.print('\f'); // Clear screen

 Serial.println("Displaying GPS info...");

 // Do the actual GPS display stuff

 delay(3000);

}

void record_GPS()

{

 Serial.print('\f'); // Clear screen

 Serial.println("Recording GPS info...");

 // Do the actual GPS recording stuff

 delay(3000);

}

void erase_data()

{

 Serial.print('\f'); // Clear screen

 Serial.println("Erasing data...");

 // Do the actual erase data stuff

 delay(3000);

}

22

void display_records()

{

 Serial.print('\f'); // Clear screen

 Serial.println("Displaying records...");

 // Do the actual data display stuff

 delay(3000);

}

void parameters()

{

 Serial.print('\f'); // Clear screen

 Serial.println("Parameters are...");

 // Do the actual parameter stuff

 delay(3000);

}

void show_credit()

{

 Serial.print('\f'); // Clear screen

 Serial.println("Dr. John Liu");

 Serial.print("Phi-panel serial V1");

 delay(3000);

}

Here is how it looks like when the second option is highlighted:

Notice in the string I didn't index the items because that was not necessary with the arrow

indicator. The interactive menu is controlled by up and down keys so you can move up and

down on the list of items and highlight your choice and press enter. Then the index is

returned to you as a single character. First option returns '1'; second option returns '2'etc.

The 9th option returns '9'. The 10th option returns ':', the character after '9'. You can use this

character minus '1' (not 1) to get the index if you want.

There is a constraint to long messages and interactive lists: they can only contain up to 255

characters. That is because Arduino has very little memory. To overcome this, you can use

a special software to store the long messages and lists on phi-panel and recall them. This

feature is discussed in this section under retrieve command.

Example 6 ï input numbers and passwords

In this example, you attempt to collect a parameter from the user to set the frequency you

record GPS info on your logger. The user is allowed to enter numbers between 5 (seconds)

23

and 3600 (1 hour). You will also ask for password if the user wants to view recorded data

(it's treasure coordinates!).

Input number:

To start simple, again we split the task into asking, and collecting response. Asking

involves printing a question to the LCD, simple. Collecting response involves getting key

presses from the user and converting them into a number.

Code snippet:

 long response; // Numerical value of the user response

 Serial.println("Delay (5-3600):"); // Print the question

 response=get_int(); // Get an integer number from phi-panel

The Serial.print() prompts the user to enter a number. Then the get_int() function receives

key presses from the panel, interprets them, and returns the entered value to variable

response. Now that you have received the number from your user, you can do anything

you want with the number. BTW, you can use left arrow as back space. Where else do you

get this function for Arduino?

Complete code:

void setup()

{

 Serial.begin(19200);

 delay(100); // Make sure the panel is up and running.

}

void loop()

{

 long response; // Numerical value of the user response

 Serial.println("Delay (5-3600):"); // Print the question

 response=get_int(); // Get an integer number from phi-panel

 Serial.println("Your response is:");

 Serial.println(response);

 delay(3000);

}

long get_int() // Understands backspace and enter

{

 char in_char[16]; // Char buffer to store incoming characters

 int i=0;

24

 int response; // Numerical value of the user response

 while(1) {

 if (Serial.available()) {

 in_char[i]=Serial.read(); // Read in one character

 Serial.write(in_char[i]); // Echo key press back to the panel for the user to see

 if ((in_char[i]==' \b')&&(i>0)) i -=2; // Handles back space.

 if (in_char[i]==' \n') { // The \n represents enter key.

 in_char[i]=0; // Terminate the string with 0.

 sscanf(in_char, "%d", &response); // Get the number from the string

 break; // This breaks out of the while(1) loop.

 }

 i++;

 if (i<0) i=0;

 }

 }

 return response;

}

Let's dissect get_int() that collects user response. The array in_char[] is a buffer to store

user key presses until the enter key is detected. Then the array is terminated by 0 according

to C standard. Then sscanf converts the character array into an integer and store it in

response. The while loop breaks at the last statement break.

Input password:

Code snippet:

 Serial.println("Enter password:"); // Print the question

 get_passwd(in_char); // Get password from user, which will be stored in in_char[].

 response=strcmp(in_char, "072811"); // Compare the input with "072811". 0 is match.

 if (response==0) Serial.println("Correct!");

 else Serial.println("Incorrect!");

Only very little changes were made to turn a standard number input into a password input.

First, in get_passwd() the characters echoed back to the panel is '*' to conceal the password.

Second, a string comparison function, strcmp() was used to compare the user input and the

key. If the return value is 0, then you have an exact match.

Complete code:

char in_char[16]; // Buffer to store incoming characters

int response; // Stores whether the password is a match to the key

void setup()

25

{

 Serial.begin(19200);

 delay(100); // Make sure the panel is up and running.

}

void loop()

{

 Serial.println("Enter password:"); // Print the question

 get_passwd(in_char); // Get password from user, which will be stored in in_char[].

 response=strcmp(in_char, "072811"); // Compare the input with "072811". 0 is match.

 if (response==0) Serial.println("Correct!");

 else Serial.println("Incorrect!");

 delay(3000);

}

void get_passwd(char in_char[])

{

 int i=0;

 while(1) {

 if (Serial.available()) {

 in_char[i]=Serial.read(); // Read in one character

 if (in_char[i]==' \n') { // The \n represents enter key.

 in_char[i]=0; // Terminate the string with 0.

 Serial.write('\n'); // New line

 break; // This breaks out of the while(1) loop.

 }

 Serial.write('*'); // Echo * to hide user input

 i++;

 }

 }

}

Example 7 ï text input

If you fancy text input on your Arduino projects, for file names, etc. you can use phi-panel

for text input too. Phi-panel is equipped with tap input so you can use the numerical pad to

tap in a string just like writing a text message on a cell phone numerical keypad. The up

arrow turns the current character between upper and lower cases. The left key is erase or

backspace, while the right key is space. The down key cycles through options of the current

character. Before you can input in tap, you will need to tell phi-panel to switch from a

straight numerical and direction pad to tap pad. After you are done, you may want to return

phi-pad to straight input for the next input.

Code snippet:

26

 Serial.println("Enter file name:"); // Print the question

 get_text(in_char); // Get text from panel

Complete code:

char in_char[16]; // Buffer to store incoming characters

void setup()

{

 Serial.begin(19200);

 delay(100); // Make sure the panel is up and running.

}

void loop()

{

 Serial.println("Enter file name:"); // Print the question

 get_text(in_char); // Get text from panel

 Serial.println("Your file name is:");

 Serial.println(in_char); // Print out the user input.

 delay(3000);

}

void get_text(char in_char[]) // Understands backspace and enter

{

 int i=0; // Input buffer pointer

 Serial.write(14); // Turn on multi-tap.

 while(1) {

 if (Serial.available()) {

 in_char[i]=Serial.read(); // Read in one character

 Serial.write(in_char[i]); // Echo key press back to the panel.

 if ((in_char[i]==' \b')&&(i>0)) i -=2; // Handles back space.

 if (in_char[i]==' \n') { // The \n represents enter key.

 in_char[i]=0; // Terminate the string with 0.

 Serial.write(15); // Turn off multi-tap.

 break; // This breaks out of the while(1) loop.

 }

 i++;

 if (i<0) i=0;

 }

 }

}

27

The code above is not very different from previous examples with inputs. The function

get_text() turns on tap and then off after done. It also nicely handles backspace so the user

is allowed to make mistakes!!!

Example 8 ï a rather complex interface

You can construct a rather complex interface with phi-panel. This example is a work in

progress.

9. Printable characters
Printable ASCII characters start from ' ' and end at '~'. They can all be printed directly on

the screen except for '~'. The character '~', which is the last ASCII character that you can

type on a keyboard, is used as the end of a command.

You can do Serial.write('\xA0') to display a right arrow '→'. You can also do

Serial.write('\x7F') to display a left arrow '←'.

You can also print HD44780 custom characters 0 to 7 by doing Serial.write(0) to

Serial.write(7).

All extended characters on the HD44780 A00 ROM from '\xA1' to '\xFF' can be printed

directly to the display.

10. Panel keypad outputs
Every time a user presses a key on the panel keypad, the panel sends the key code to serial

port for Arduino to read. The following is a table of what code is returned when each key

is pressed.

Notice that the function key names are different between the panels with integrated keypads

and back packs with plug-in membrane keypad.

Key name Return code ASCII character

1 49 '1'

2 50 '2'

3 51 '3'

4 52 '4'

5 53 '5'

6 54 '6'

7 55 '7'

8 56 '8'

9 57 '9'

0 48 '0'

UP/A 45 '-'

DOWN/B 32 ' ' (SPACE)

LEFT/C 8 '\b' (BK_SPACE)

28

RIGHT/D 46 '.'

ENTER/* 10 '\n' (NEW_LINE)

ESCAPE/# 27 (captured by menu) '\e' (ESCAPE)

The return code is the ASCII code and the ASCII character is the displayed character if

you print the return value to serial port.

To have your program respond to a press on the left key or the C key, you can do

response=Serial.read();

if (response=='\b') do_something();

or

response=Serial.read();

if (response==8) do_the_same_thing();

The end results are the same if you use the ASCII character or the return code.

Starting next firmware update, I might have an option to switch between different

mappings of the key codes. So you may switch to mapping the function keys just as their

face values. Also I will consider disabling the on board menu so you can use the escape

key for your program. In this case, a special method will be added so you still can invoke

the on board menu.

You may wonder why the strange return codes for the A-D and * and #?! But it all makes

sense with the integrated keypad with left acting as back space and enter printing new line.

The other keys are just for simple way to enter a number.

Starting with Arduino IDE 1.0 the serial input is buffered so even if you are not in a while

loop reading serial port all the time, the key presses are not easily lost but stored in the

serial input buffer for you to read later. Just don't go into a loop that won't exit, then you

won't get any key presses. Also don't wait too long between checking serial input. Your

user may notice delay if you ignore the serial input for say more than 0.1 seconds.

11. Basic ASCII control characters
Basic ASCII control characters have been used for well over half of a century and are still

used today to format outputs of strings on a display device. Phi-panel can interpret the

following basic ASCII control characters:

'\b': destructive back space.

The cursor is taken one character back and the character is replaced by space.

29

'\e': escape sequence indicator.

This is the start of an ANSI escape sequence. See ANSI escape sequence for more

details.

'\f': form feed.

This is equivalent to clear screen. In old printer terminology, this is the same as feeding the

printer with a fresh piece of paper. This later became clearing the screen of a computer.

There are many ways to clear screen and this is the most recommended way.

'\n': new line or line feed.

This will move the cursor to the next line. It also automatically returns the cursor to the

beginning of the next line. This is totally what you expect in classic C programming. If you

create a new line when the cursor is already at the bottom right corner of the screen, the

screen content is scrolled up one line and the first line is lost. You will still see lines 2-4

and a blank line. To clear screen you can also do new lines 4 times but you should really

use form feed instead. On the other hand, if you want some sort of animation of scrolling

message up, you can do '\n', delay(500), '\n', delay(500) etc. Not every road to Rome is as

fast but some are more scenery.

'\r': carriage return.

This returns the cursor to the beginning of the current line without erasing anything. If you

print something after a carriage return, you are simply overwriting the current content of

this line. This is useful when this line is repeatedly updated to reflect the current values of

something. In some old systems a carriage return means return the cursor to the beginning

of a line and start a new line. That is not popular anytime. Unix, Linux and Mac use a '\n'

to start a new line. Windows uses "\r\n".

'\t': tab (4 spaces).

This is one of the most useful formatting characters. Using tabs you can format your output

in nice left-aligned columns. Due to the fact that character LCDs only have small amount

of display area, I decided to have tab of 4 characters wide instead of the popular 8 character

tab on most systems. Here is an example of using tabs when printing out numbers:

2345 7150 617

-2266 3430 331

Here is how they look without tabs:

2345 7150 617 -2266

3430 331

30

^N or 14: shift out (enable multi-tap input).

This command was originally used to shift out standard font in order to use alternative font

from non-English language. I commandeered this command to shift out the original

numerical and directional keypad and enable multi-tap input on the keypad. Example:

Serial.write(14);. This enables multi-tap. Since there is only one character, you don't have

to use Serial.print(). Here is a multi-tap keypad diagram:

Figure. Multi-tap input on phi-panel

I have put the directional key and ent/esc below the numerical keys to fit with the page

boundary of this manual.

As you can see, when multi-tap is enabled, you can enter all 26 letters in both upper or

lower cases, all 10 numbers, space, back space, enter, and all 32 symbols. By default the

letters are in upper case. A single press of the shift (up arrow) will make all subsequent

input in lower case. Another press will resume upper case for subsequent input. The

temporary result of an input is rendered locally on the pad so that only the final entry of a

character is relayed via the serial port. The developer should relay the final character back

to the panel via serial, if they want their users to see the final entry of a character, including

space, back space, and enter. See example here.

^O or 15: shift in (disable multi-tap input).

This was originally used to shift back in the English characters from a non-English set in

the past and I used it for disabling multi-tap input. This disables the multi-tap. You are

better off without the multi-tap if all you want is to enter numbers or getting more

immediate responses. The multi-tap requires time to finalize on each input character, about

a second, so if you want immediate relay of a key press back via serial, you want it off.

Example: Serial.write(15);. This disables multi-tap.

18: enable the scroll.

19: disable the scroll.

31

^W or 23: End of transmission (deselect serial device)

The syntax is simply 0x17. This causes the selected serial device to stop responding to the

serial messages.

^\ or 28: File separator (select serial device)

The syntax is 0x1C followed by a one-byte address. The broadcast address is 0xFF (255)10;

which causes all connected and serially addressed panels to display subsequent messages.

Example: 0x1C 0x01. This will cause the serial panel with the address 01 to respond to

subsequent serial messages, if the panel is set to be serial addressable. To deselect the

selected device, including the devices selected by broadcast address, send an end of

transmission.

12. ANSI escape sequences (standard)
The ANSI has developed a standard way of controlling the character screen for many years.

Unlike some other serial LCDs that all speak their own language, they should really speak

ANSI and ASCII. With ANSI escape sequences, used as commands, you can move your

cursor, clear part of or the entire screen. You can also use the private ANSI escape

sequences to render interactive elements such as YES/NO dialog, scrollable long message,

scrollable menus or long lists, or numerical input. The private sequences are covered in the

next section. In this section and the next, the word CSI means control sequence introducer.

In Arduino, you will replace CSI with "\e[". Then n and m represent numbers where

appropriate.

In phi-panel for Raspberry PI firmware, CSI functions are disabled and the CSI characters

are discarded so that color terminal outputs (setting color, moving cursor etc.) will not

produce undesired response on the panel. All standard ANSI escape sequences are ended

by character '~' .

CSI n A: CUU ï CUrsor Up

Moves the cursor n (default 1) cells up. If the cursor is already at the edge of the screen,

this has no effect. Example: "\e[2A~". This moves the cursor up 2 lines.

CSI n B: CUD ï CUrsor Down

Moves the cursor n (default 1) cells down. If the cursor is already at the edge of the screen,

this has no effect. Example: "\e[3B~". This moves the cursor down 3 lines.

CSI n C: CUF ï CUrsor Forward

Moves the cursor n (default 1) cells to the right. If the cursor is already at the edge of the

screen, this has no effect. Example: "\e[10C~". This moves the cursor right 10 spaces.

32

CSI n D: CUB ï CUrsor Back

Moves the cursor n (default 1) cells to the left. If the cursor is already at the edge of the

screen, this has no effect. Example: "\e[6D~". This moves the cursor left 6 spaces.

CSI n E: CNL ï Cursor Next Line

Moves cursor to beginning of the line n (default 1) lines down. This is not equivalent to

new lines. It is rather equivalent to carriage return then CUD n. Example: "\e[2E~". This

moves the cursor two lines down and returns it to the left of the line.

CSI n F: CPL ï Cursor Previous Line

Moves cursor to beginning of the line n (default 1) lines up. This is not equivalent to new

lines. It is rather equivalent to carriage return then CUD n. Example: "\e[2F~". This moves

the cursor two lines up and returns it to the left of the line.

CSI n G: CHA ï Cursor Horizontal Absolute

Moves the cursor to column n. This column starts from 1 and ends at 20, which is according

to ANSI. Example: "\e[5G~". This moves the cursor to column 5 on the current line.

CSI n ; m H: CUP ï CUrsor Position

Moves the cursor to row n, column m. The values are 1-based, and default to 1 (top left

corner) if omitted. A sequence such as CSI ;5H is a synonym for CSI 1;5H as well as CSI

17;H is the same as CSI 17H and CSI 17;1H. Example: "\e[3;5H~". This moves the cursor

to row 3 and column 5. Please don't include any space between the numbers.

CSI n I: CSC ï CUrsor Scroll Control

Set how the cursor will scroll at the end of the screen. The values are 1-based, and default

to 1 if omitted. When n=1, auto scroll is enabled so when a character is printed at the bottom

right of the screen, the screen scrolls up one line and an empty line is created and the cursor

is moved to the beginning of the empty line. When n=2, auto scroll is turned off. At the

end of the screen, the cursor moves to the beginning of the screen. When n=3, the cursor

stays at the end of the screen and will not move. Example: "\e[2I~". This makes the panel

turn off the auto scroll. You can do this if you want to use the last space on the screen in

your interface. This is my addition to the escape sequence.

CSI n J: ED ï Erase Data

Clears part of the screen. If n is two, clear entire screen. This is the only option implemented.

33

CSI n[;k] L: DD ï Display Dimension(backpack only)

This function is only implemented on the serial backpack since the panels have fixed-size

displays. This sets the size of the display size in column and row. Valid combinations are

the following:

Column (n) Row (k)

16 2

20 2

40 2

20 4

Example1: "\e[16;2L~". This sets the display to 16*2.

Example2: "\e[20;4L~". This sets the display to 20*4.

Please allow a delay as much as 500ms for the panel to reset before sending more

information to it. This function is intended for backpacks and is not persistent upon

hardware reset. It should be called in setup(). Although this function is included in the

panels with integrated keypads, users are not recommended to use this function. Notice

that 16*1 and 16*4 are not supported since their display memory is organized differently

from the rest. After a successful command, the panel resets with the new dimension. If the

dimensions are not accepted, the panel discards the command and keeps the current display

dimension. The panel provides no response to the command.

CSI n[;k] m: SGR ï Select Graphic Rendition

Notice that n and k are numbers but m is a character literal 'm', not a number. When n=0,

k is omitted and the graphic style is reset. Underline or blinking cursor is hidden; back light

brightness is set to 255. When n=4, underline cursor is shown. When n=24, underline

cursor is hidden. When n=5, blinking cursor is turned on. When n=25, blinking cursor is

turned off. When n=8, the display is turned off so the information is concealed. When n=28,

the display turned on so information is revealed. When n=26, k describes the back light of

the LCD, between 0 and 255.

Example1: "\e[5m~". This turns on the blinking cursor.

Example2: "\e[4m~ ". This turns on the underline cursor.

Example3: "\e[26;128m~". This sets the LCD back light to half the maximal brightness.

The following are not yet implemented since they don't seem to be useful:

CSI n K: EL – Erase in Line

Erases part of the line. If n is zero (or missing), clear from cursor to the end of the line. If

n is one, clear from cursor to beginning of the line. If n is two, clear entire line. Cursor

position does not change.

CSI n S: SU – Scroll Up

Scroll whole page up by n (default 1) lines. New lines are added at the bottom. (not

ANSI.SYS)

CSI n T: SD – Scroll Down

Scroll whole page down by n (default 1) lines. New lines are added at the top. (not

ANSI.SYS)

34

CSI n ; m f : HVP – Horizontal and Vertical Position

Moves the cursor to row n, column m. Both default to 1 if omitted. Same as CUP

CSI 6 n: DSR – Device Status Report

Reports the cursor position to the application as (as though typed at the keyboard)

ESC[n;mR, where n is the row and m is the column. (May not work on MS-DOS.)

CSI s: SCP – Save Cursor Position

Saves the cursor position.

CSI u: RCP – Restore Cursor Position

Restores the cursor position.

13. ANSI escape sequences (phi_prompt)
Besides standard ANSI sequences, the phi-panel is also integrated with phi_prompt user

interface library functions at your disposal, such as interactive menu/list, numerical input,

OK dialog, YES/NO dialog and long message with scrolling function. The following are

the sequences to call these functions. These function calls are all terminated with '~' .

1. \e A String: OK dialog

This displays an OK dialog with the string as prompt. The phi-panel will lock up and only

accept new information after the user has pressed a key to indicate that he/she has read the

prompt message. Example: "\eAWelcome to GPS logger!~". Notice the '~' ends the string.

This will make the panel render an OK dialog like in the following figure:

Any excess message too long to fit will be truncated.

Once the user dismisses the OK dialog, phi-panel will send a '~' over the serial port to

indicate it is ready to accept new commands or texts to display. Notice that there is no

space between '\e' and A or between A and the string.

Figure 12-1. OK dialog displayed on 16X2 and 20X4 displays

35

2. \e B String: YES/NO dialog

This displays a YES/NO dialog. The user is then able to use up and down keys to choose

between YES and NO. Once the user makes the choice with the "enter" key, phi-panel

sends back the response via serial either as "Y" or "N" so you can decide what to do with

the user choice. Example: "\eBDelete all data?~". Notice the '~' ends the string. This will

make the panel render a YES/NO dialog to ask the user whether to delete all data. The

following is an example of a YES/NO dialog:

Figure 12-2. Y/N dialog displayed on 16X2 and 20X4 displays

3. \e C n String: Input text

This displays a prompt and waits for the user to enter a string of length n. Example:

"\eC8Enter here~". Notice the '~' ends the string. This will prompt "Enter here" and asks

for 8 characters. See the following figure:

Phi-panel returns exact number of characters ending with a '~'.

4. \e D n String: Input numerical value

This displays a prompt and waits for the user to enter a number with n spaces. Note that

negative and decimal both count towards n. To guarantee correct results, you should not

enter the negative sign in the middle of the number or have more than one decimal point.

Example: "\eD3Enter number~". Notice the '~' ends the string. Phi-panel will prompt

"Enter number" and asks for a 3-digit number, including negative sign and decimal point

if needed. The panel then returns the number in ASCII form ending with a '~'.

5. \e E n String: Input alphanumerical string

This displays a prompt and waits for the user to enter an alphanumerical string with n

spaces. The difference between E and C is that E can only accept alphanumerical strings,

while C accepts all symbols besides characters. Example: "\eE12Enter here~". Notice the

'~' ends the string. The panel will prompt "Enter here" and asks for 12 alphanumerical

characters. Phi-panel then returns the exact number of characters ending with a '~'.

36

6. \e F Prompt_string String1 [String2 é]: interactive list/menu

This accepts a prompt string and a number of strings as list or menu items and renders an

interactive list or menu on phi-panel. The maximal length of this command is 80

characters.

Example:
"\eFSelect month:\nJAN\nFEB\nMAR\nAPR\nMAY\nJUN\nJUL\nAUG\nSEP\nOCT\nNOV\nDEC\n~".

Notice the '~' ends the string. This renders an interactive list of 12 months. Just printing

these out without using the interactive feature won't since there are too many characters to

fit on one screen. Plus there are no '11' or '12' keys on the key pad. Using an interactive list

is the best solution. You will use up and down arrows to navigate through the items and

make your choice. The panel returns '1', or '2' if the first or second item is chosen. Numbers

greater than 9 is returned as '9'+rest so it is one ASCII character. For example the characters

after '9' are ':', ';', '<', '=', '>', '?' and '@', for choices from 10 to 16. Up to 16 choices are

allowed. Up to 255 bytes allowed for all choices, prompt, and '\n' combined. The menu

automatically arranges itself for the best fit on screen. Another feature is that this function

remembers the last selection so if you run the same menu twice in a row it knows what you

selected last time. To set the highlighted menu item, use "\eWn~". Please refer to the

section of \e W n: Set highlighted menu item

Figure 12-3. Interactive menu displayed on 16X2 and 20X4 displays

7. \e G String: Long message

This accepts a text area to display a long message on the whole screen with scroll function.

This way you can display long messages such as instructions for the user to read. Up and

down arrows can scroll the message. The long message wraps strings at the end of a line

and also accepts new lines ('\n') and tabs('\t'). Example: "\eGDeveloped by:\nDr.Liu

07/27/11\nhttp://liudr.wordpress.com\n All rights reserved.~" Notice the '~' ends the string.

This will display the message and allow the user to scroll up and down to read the entire

message. Phi-panel returns the key pressed by the user to indicate the user has finished

reading the message and pressed a key (other than up or down arrow) to dismiss the

message. A maximal of 255 characters can be displayed, including all '\n' and '\t' etc.

8. \e H n: Change baud rate

This causes phi-panel to temporarily change its baud rate to n. Example: "\eH19200~".

Notice the '~' ends the string. This will cause phi-panel to change baud rate to 19200. On

37

startup, the baud rate is always 9600 to prevent the panel from stuck at an unknown baud

rate. Only the following rates are recommended: 2400, 4800, 9600, 19200, 28800, 38400,

48800, 57600, and 115200. Phi-panel with return '~' in the new baud rate after it sets the

new baud rate successfully.

14. ANSI escape sequences (extended functions)
Beside the already awesome phi_prompt user interface functions, phi-panel also accepts

the following ANSI sequences to control its other functions, such as back light brightness,

buzzer or tone, LED indicator control, general purpose output control, and other advanced

functions:

\e I n: Change LED/general purpose output status

(Integrated panels only).The number n represents the status of the LED and ranges from 0

to 15. There are 4 LEDs totally. Example: "\eI3~". Notice the '~' ends the string. This causes

phi-panel to turn on the first two LEDs. If you want to turn on the first two LEDs then the

logic status of the LEDs is, starting from first LED to last LED, off, off, on, on. In binary

format this is (3)10=(0011)2, which is 3 in hexadecimal form. If you do "\eI15~" then

(15)10=(1111)2. So all LEDs are turned on. If you are not comfortable with hexadecimal

numbers, use the next commands to turn on/off one LED at a time.

\e J n: Turn on the nth LED/general purpose output

(Integrated panels only).This causes phi-panel to turn on an LED. The number is 0 based

and starts from left to right. Example: "\eJ2~". Notice the '~' ends the string. This turns on

the third LED from left.

\e K n: Turn off the nth LED/general purpose output

(Integrated panels only).This causes phi-panel to turn off an LED. The number is 0 based

and starts from left to right. Example: "\eK0~". Notice the '~' ends the string. This turns off

the first LED from left.

\e O n;m: Play a tone on the speaker

(A speaker required for backpacks).This causes phi-panel to play a tone at nHz for m

milliseconds. Phi-panel can accept new commands immediately after receiving this

command and will not wait until the tone is over. A subsequent buzz/tone command will

stop this one and start the new one. Example: "\eO440;500~". Notice the '~' ends the string.

This will cause phi-panel to play 440Hz for 500ms or 0.5 seconds. To simply sound a bell,

use the next command.

38

\e P: Buzz

This causes phi-panel to buzz for 0.125 seconds. Phi-panel can accept new commands

immediately after receiving this command and will not wait until the tone is over. A

subsequent buzz/tone command will stop this one and start the new one. Example: "\eP~".

Notice the '~' ends the string. This will cause phi-panel to buzz, a good way to warn user

of something happening.

\e Q n: Back light level

This causes phi-panel to adjust back light level. The number n is between 0 and 255. Larger

numbers represent brighter back light. Example: "\eQ128~". Notice the '~' ends the string.

This will cause phi-panel to set its LCD back light to half brightness. You should turn off

the back light when there is enough ambient light to save power on a battery-powered

project.

\e S n binary: Set a custom character

This causes phi-panel to set a custom character. All HD44780 character displays have 8

custom characters, with ASCII code 0 to 7. With eight binary numbers, you can draw any

shape you like and store them there, maybe an hourglass or a smiley. Example:

"\eS3\x9f\x91\x8a\x84\x84\x8a\x91\x9f~". Notice the '~' ends the string. This sets up

custom character 3 as an hourglass. You need to pay special attention to the encoding of

the character not to use ANY number between 0 and 31, as those numbers are used for

special functions. In case you do need a number such as 0x11, you will use 0x91, basically

adding 0x80 to every number that falls between 0 and 0x1F (31)10.

\e T n: Enable or disable repeat after a key is held.

When n=1, repeat after key held is disabled. When n=2 repeat after key held is enabled.

Example: "\eT2~". Notice the '~' ends the string. This causes the panel to repeat a key when

it is held. This option will not work when multi-tap is enabled. It is simply not compatible

with multi-tap.

\e U n: User keypad settings (serial backpack only).

At the current firmware edition, this function has not been implemented. A future firmware

release will feature this option. When n=1, the standard 16-key pad and 4 indicator LED is

used. When n=2, each digital input is connected to one push button. When n=3, a 4*3

matrix is connected. When n=4, a 4*4 matrix keypad is connected. When n=5, a rotary

encoder is connected to the SCL/SDA pins and the buzzer is sensing the click of the

encoder shaft.

Example: "\eU2~". Notice the '~' ends the string. This causes the panel to sense each digital

input as an individual key 2-9. For details, read the hardware section on keypad choices.

39

\e V n: Set phi_prompt display details.

(Not yet implemented) A future firmware release will feature this option. When n=1, the

standard phi_prompt feature is used. When n=2, scroll bar is turned off. When n=3, scroll

bar is turned on. When n=4, centering choice is turned off. When n=5, centering choice is

turned on. When n=6, auto scrolling choice is turned off. When n=7, auto scrolling choice

is turned on. When n=8, menu title is turned off. When n=9, menu title is turned on.

Example: "\eV2~". Notice the '~' ends the string. This causes the panel to turn off the scroll

bar and spare one more character to display the list.

\e W n: Set highlighted menu item

This causes phi-panel to set highlighted menu item to n (1 based). Your menu items run

from 1 to max_items, 32 by default. This is only effective to the menu to be displayed after

this command. If you already sent a menu to phi-panel, this will not affect the currently

displayed menu but will affect the next menu. So if you want item 3 to be highlighted for

the menu you are about to display, follow this example: Example: "\eW3~". Notice the '~'

ends the string. This feature is included in firmware 1.6.4.

\e Z: Reinitialize phi_prompt.

Since phi_prompt library requires custom LCD characters for the scroll bar in long message

function, if you have redefined some custom characters, the scroll bar will be messed up.

You will need to reinitialize the library if you want it to function properly again on long

message. Example: "\eZ~". This causes the phi_prompt library reinitialize. Notice the '~'

ends the string.

\e a: Display ASCII string on screen.

In some versions of the firmware, such as phi-panel for Raspberry PI, plain texts are

ignored. Only escape sequence is processed and displayed. The purpose is to ignore

anything the linux system printed to the serial terminal and only respond to user program's

request to display information. Example: "\eaHello World!\nGood Night!~". This causes

the display to print the message on the first two lines. Notice the '~' ends the string.

\e b: Display panel settings menu.

I have decided to disable esc key from entering the panel settings menu. Instead, send this

command if you want it displayed. Hope this makes everybody happy! Example: "\eb~".

This causes the panel to enter the panel settings menu. Notice the '~' ends the string.

15. Future improvement
I would pounder on the following in the future:

¶ Feedback from Arduino fans like you can help me a lot. Visit

http://liudr.wordpress.com and leave your feedback under Phi-panel

¶ I am always improving the firmware to add more functions and make incremental

improvements to the circuit board design.

http://liudr.wordpress.com/

40

16. The legal stuff
The panel in its entirety can be used in any personal, educational or commercial purposes.

The firmware on the on-board microcontroller has my copyright and should not be

disassembled or copied out of the microcontroller. If you intend to incorporate this

firmware in your commercial products or want some customization to the panel to suit your

needs, Contact me at http://liudr.wordpress.com. The developer assumes no responsibility

for personal injuries or property damages if you use the library.

http://liudr.wordpress.com/

